Multiple positive solutions for quasilinear elliptic problems with combined critical Sobolev–Hardy terms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solutions of Critical Quasilinear Elliptic Problems in General Domains

We consider a certain class of quasilinear elliptic equations with a term in the critical growth range. We prove the existence of positive solutions in bounded and unbounded domains. The proofs involve several generalizations of standard variational arguments.

متن کامل

Multiple Positive Solutions for Quasilinear Elliptic Problems with Sign-changing Nonlinearities

Using variational arguments we prove some nonexistence and multiplicity results for positive solutions of a system of p−Laplace equations of gradient form. Then we study a p−Laplace type problem with nonlinear boundary conditions.

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Asymptotic Behavior of Positive Solutions of Some Quasilinear Elliptic Problems

We discuss the asymptotic behavior of positive solutions of the quasilinear elliptic problem −∆pu = au p−1 − b(x)u, u|∂Ω = 0 as q → p − 1 + 0 and as q → ∞ via a scale argument. Here ∆p is the p-Laplacian with 1 < p < ∞ and q > p−1. If p = 2, such problems arise in population dynamics. Our main results generalize the results for p = 2, but some technical difficulties arising from the nonlinear d...

متن کامل

Positive Entire Solutions of Quasilinear Elliptic Problems via Nonsmooth Critical Point Theory

We prove that a variational quasilinear elliptic equation admits a positive weak solution on R n. Our results extend to a wider class of equations some known results about semilinear and quasilinear problems: all the coefficients involved (also the ones in the principal part) depend both on the variable x and on the unknown function u; moreover, they are not homogeneous with respect to u.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2019

ISSN: 1687-2770

DOI: 10.1186/s13661-019-1249-2